Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under S3

نویسندگان

  • Dae San Kim
  • Kyoung Ho Park
  • Yeol J. E. Cho
چکیده

We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the p-adic integral expression of the generating function for the Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

AN IDENTITY OF THE SYMMETRY FOR THE FROBENIUS-EULER POLYNOMIALS ASSOCIATED WITH THE FERMIONIC p-ADIC INVARIANT q-INTEGRALS ON Zp

Abstract. The main purpose of this paper is to prove an identity of symmetry for the Frobenius-Euler polynomials. It turns out that the recurrence relation and multiplication theorem for the Frobenius-Euler polynomials which discussed in [ K. Shiratani, S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Memo. Fac. Sci. Kyushu University Ser.A, 39(1985), 1...

متن کامل

Identities of Symmetry for Generalized Higher - Order q - Euler Polynomials under S 3 Dmitry

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we study the identities of symmetry for the generalized higher-order q-Euler polynomials in three variable under symmetry group S 3 which are derived from the...

متن کامل

Some identities of symmetry for the degenerate q-Bernoulli polynomials under symmetry group of degree n

Recently, Kim-Kim Introduced some interesting identities of symmetry for qBernoulli polynomials under symmetry group of degree n. In this paper, we study the degenerate q-Euler polynomials and derive some identities of symmetry for these polynomials arising from the p-adic q-integral on Zp. AMS subject classification: 11B68, 11S80, 05A19, 05A30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010